完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > 電源芯片
是在電子設備系統(tǒng)中擔負起對電能的變換、分配、檢測及其他電能管理的職責的芯片。主要負責識別CPU供電幅值,產(chǎn)生相應的短矩波,推動后級電路進行功率輸出。
電源管理芯片,是在電子設備系統(tǒng)中擔負起對電能的變換、分配、檢測及其他電能管理的職責的芯片。主要負責識別CPU供電幅值,產(chǎn)生相應的短矩波,推動后級電路進行功率輸出。常用電源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。
基本類型
主要電源管理芯片有的是雙列直插芯片,而有的是表面貼裝式封裝,其中HIP630x系列芯片是比較經(jīng)典的電源管理芯片,由著名芯片設計公司Intersil設計。它支持兩/三/四相供電,支持VRM9.0規(guī)范,電壓輸出范圍是1.1V-1.85V,能為0.025V的間隔調(diào)整輸出,開關頻率高達80KHz,具有電源大、紋波小、內(nèi)阻小等特點,能精密調(diào)整CPU供電電壓。
電源管理芯片,是在電子設備系統(tǒng)中擔負起對電能的變換、分配、檢測及其他電能管理的職責的芯片。主要負責識別CPU供電幅值,產(chǎn)生相應的短矩波,推動后級電路進行功率輸出。常用電源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。
基本類型
主要電源管理芯片有的是雙列直插芯片,而有的是表面貼裝式封裝,其中HIP630x系列芯片是比較經(jīng)典的電源管理芯片,由著名芯片設計公司Intersil設計。它支持兩/三/四相供電,支持VRM9.0規(guī)范,電壓輸出范圍是1.1V-1.85V,能為0.025V的間隔調(diào)整輸出,開關頻率高達80KHz,具有電源大、紋波小、內(nèi)阻小等特點,能精密調(diào)整CPU供電電壓。
應用范圍
電源管理芯片的應用范圍十分廣泛,發(fā)展電源管理芯片對于提高整機性能具有重要意義,對電源管理芯片的選擇與系統(tǒng)的需求直接相關,而數(shù)字電源管理芯片的發(fā)展還需跨越成本難關。
當今世界,人們的生活已是片刻也離不開電子設備。電源管理芯片在電子設備系統(tǒng)中擔負起對電能的變換、分配、檢測及其它電能管理的職責。電源管理芯片對電子系統(tǒng)而言是不可或缺的,其性能的優(yōu)劣對整機的性能有著直接的影響。
提高性能
所有電子設備都有電源,但是不同的系統(tǒng)對電源的要求不同。為了發(fā)揮電子系統(tǒng)的最佳性能,需要選擇最適合的電源管理方式。首先,電子設備的核心是半導體芯片。而為了提高電路的密度,芯片的特征尺寸始終朝著減小的趨勢發(fā)展,電場強度隨距離的減小而線性增加,如果電源電壓還是原來的5V,產(chǎn)生的電場強度足以把芯片擊穿。所以,這樣,電子系統(tǒng)對電源電壓的要求就發(fā)生了變化,也就是需要不同的降壓型電源。為了在降壓的同時保持高效率,一般會采用降壓型開關電源。同時,許多電子系統(tǒng)還需要高于供電電壓的電源,比如在電池供電設備中,驅(qū)動液晶顯示的背光電源,普通的白光LED驅(qū)動等,都需要對系統(tǒng)電源進行升壓,這就需要用到升壓型開關電源。此外,現(xiàn)代電子系統(tǒng)正在向高速、高增益、高可靠性方向發(fā)展,電源上的微小干擾都對電子設備的性能有影響,這就需要在噪聲、紋波等方面有優(yōu)勢的電源,需要對系統(tǒng)電源進行穩(wěn)壓、濾波等處理,這就需要用到線性電源。上述不同的電源管理方式,可以通過相應的電源芯片,結(jié)合極少的外圍元件,就能夠?qū)崿F(xiàn)。可見,發(fā)展電源管理芯片是提高整機性能的必不可少的手段。
開關電源控制芯片r7731的工作原理
供電(啟動):芯片的VDD腳接一個電容到地,一個電阻到輸入電壓正極,上電時輸入電壓通過電阻給電容充電,當電容上的電壓充到芯片的啟動電壓門限值時,芯片開始工作。
供電(維持):為了節(jié)能,啟動電阻都比較大,單靠電阻電容不能提供維持芯片正常工作所需的電流,所以要在高頻變壓器上設一個供電繞組給芯片供電。芯片一旦啟動工作,該繞組的輸出電壓就為芯片提供持續(xù)的電源。
開關管驅(qū)動:芯片一旦啟動工作,GATE腳便驅(qū)動開關管導通或截止,各輸出繞組便有電壓輸出。
開關管電流檢測:開關管源極接一個電流采樣電阻,采樣電壓送到芯片CS腳,當電流達到設計的最大值時,CS腳電壓大于芯片內(nèi)部設定的基準電壓,GATE腳電壓變低,關斷開關管。
輸出電壓反饋:輸出電壓的變化經(jīng)光藕反饋到芯片COMP腳,控制占空比?! ≌袷庮l率:RT腳到地的電阻大小,決定開關頻率。
電源管理的原理和方法
多年來,隨著系統(tǒng)內(nèi)電源數(shù)量的增多,為了確保其安全、經(jīng)濟、持續(xù)和正常的工作,特別是在使用微處理器時,對電源軌進行監(jiān)測和控制變得非常重要。確定電壓軌是超過閾值還是處于工作范圍內(nèi),以及該電壓相對于其它電壓軌是否按照正確的時序上電或斷電,這些對于系統(tǒng)運行的可靠性和安全性來說都是至關重要的。
對于這個問題,有許多解決方案。例如,利用由精密電阻分壓器、比較器和基準電壓源組成的簡單電路,就能夠檢測電壓軌上的電壓是高于還是低于規(guī)定的電平。在復位發(fā)生器中,如ADM809,將這類器件與延遲器件結(jié)合在一起,能夠使微處理器、ASIC(專用集成電路)以及DSP(數(shù)字信號處理器)等在上電時便處于復位狀態(tài),這種類型的監(jiān)控適合于多種應用。
當需要監(jiān)控多路電壓軌時,會需要更多的不只是用于簡單監(jiān)控電壓的監(jiān)控IC。例如,考慮一個常見的電源時序控制需求:FPGA(現(xiàn)場可編程門陣列)制造商規(guī)定,在向器件提供5V I/O(輸入/輸出)電壓之前,必須先施加3.3V的內(nèi)核電壓,并持續(xù)至少20ms,以避免器件上電時受到損壞。對于系統(tǒng)的可靠性來說,滿足這樣的時序要求就像要保證器件在規(guī)定的電源電壓和溫度范圍內(nèi)工作一樣至關重要。
隨著應用的發(fā)展,電源軌數(shù)量也在顯著增加。一些復雜、昂貴的系統(tǒng),如LAN(局域網(wǎng))交換機和蜂窩電話基站,線路卡通常會包含10路或更多電壓軌;即使是成本敏感的消費類系統(tǒng),如等離子電視,也可能具有多達15路的獨立電壓軌,其中許多電壓軌都需要進行監(jiān)控和時序控制。
目前,許多高性能的IC都需要多路電壓。例如,提供獨立的內(nèi)核電壓和I/O電壓已成為許多器件的標準。在高端系統(tǒng)中,每個DSP器件會需要多達四個獨立的電源。而在更多情況下,單一系統(tǒng)中可能存在著大量的多電源器件,包括FPGA、ASIC、DSP、微處理器和微控制器(以及模擬器件)。
系統(tǒng)中有許多器件都可以采用標準電源電壓供電(如3.3V),而另一些器件可能需要專用電壓。此外,某些標準電壓可能還需要用到很多不同的地方。例如,有時會需要像3.3 VANALOG和3.3 VDIGITAL這樣獨立的模擬電源和數(shù)字電源。為了提高效率(如存儲器電源軌的電流會達到數(shù)百安培)或滿足時序要求(個別器件在不同時間需要3.3 VA以及3.3 VB),可能需要多次產(chǎn)生相同的電壓。所有這些因素都導致電源數(shù)量的增加。
電壓監(jiān)控和時序控制有時會變得極為復雜,特別是當一個系統(tǒng)必須設計為能夠支持上電時序控制和斷電時序控制,并能夠在工作期間的不同時間點上對不同電源軌上的所有可能故障狀況均產(chǎn)生多種響應時。中心電源管理控制器是解決這個難題的最佳方案。
隨著電源電壓數(shù)量的增加,發(fā)生故障的幾率也隨之增加。其風險與電源數(shù)量、器件數(shù)量和系統(tǒng)復雜程度成正比,外部因素也會增加風險。例如,如果在初始設計階段沒有完整地定義出主ASIC的特性,那么電源設計工程師必須用硬連線實現(xiàn)電壓監(jiān)控閾值和時序控制,但這些都可能會隨著ASIC技術指標的改變而發(fā)生變化。如果需求發(fā)生改變,那么PCB(印制電路板)必須進行修改,這顯然會影響開發(fā)進度和成本。另外,某些特定器件的電源電壓技術指標可能會在開發(fā)過程中有所改變。在這種情況下,對于任何一個中心電源系統(tǒng)管理器來說,易于調(diào)整電源的方法將會是非常有用的。事實上,對這種系統(tǒng)的電壓軌進行監(jiān)控、時序控制和調(diào)節(jié)時,靈活性是非常重要的。
對選定的故障保護機制和時序控制的魯棒性進行評估是一件相當龐大的工作,因此,能夠簡化這一過程的器件將加速電路板的評估,并縮短上市時間。不論是在工作現(xiàn)場,還是從早期PCB開發(fā)到原型評估的各個設計階段,故障記錄以及數(shù)字化的電壓和溫度數(shù)據(jù)都是很有用的特性。
基本監(jiān)控
下圖所示為利用ADCMP361監(jiān)控多路電壓軌的簡單方法,這是一款內(nèi)置基準電壓的雙極性輸出、±0.275%精度的比較器 。由于ADCMP361內(nèi)置400mV高精度基準電壓源,因此可以精確的監(jiān)控非常低的電壓,例如0.9V 的電壓軌。其中,每路電壓軌都使用獨立的電路。電阻分壓器將電壓軌按比例降低,并為每一路電源設置一個欠壓跳變點。所有的輸出被連接在一起,產(chǎn)生通用電源良好信號。
基于比較器的欠壓檢測,提供通用電源良好輸出,可用于3路電源系統(tǒng)
由于采用更低電源電壓的新工藝的發(fā)展,加上遺留的I/O電壓要求,近年來復雜系統(tǒng)中電壓軌的數(shù)量大幅增加。當需要監(jiān)控多路電壓軌時,可以使用能分別監(jiān)控兩路或三路電壓軌的多電壓監(jiān)控器,如ADM13305以及ADM13307。ADM6710與ADM1184還可以監(jiān)控四路電壓軌。ADM6710可提供預調(diào)電壓閾值,ADM1184可提供4個高精度(±0.8%)的可調(diào)輸入信號,能夠利用外部電阻分壓器網(wǎng)絡設置跳變閾值。
多電壓監(jiān)控器
表1 多電壓監(jiān)控器
更小的工藝尺寸正在推動內(nèi)核電壓向更低的方向發(fā)展。通常在大電流情況下,必須有效地提供低電壓,而且必須遵守嚴格的調(diào)節(jié)和瞬態(tài)指標。低壓時余量的不足可能會引起預想不到的器件行為。例如,如果電源電壓下降到電信ASIC的閾值以下,芯片的工作會出現(xiàn)異常,可能導致正在發(fā)送的信息被破壞或者數(shù)據(jù)丟失。隨著內(nèi)核電壓的下降,對高精度電壓監(jiān)控器的要求將更加苛刻,如圖所示。
圖 需要高精度監(jiān)控器
在這個例子中,1 V穩(wěn)壓電源實際的電壓范圍是0.97 V~1.03 V。微處理器可接受的核心電壓是1 V (±5%),即0.95 V~1.05 V。因此,欠壓監(jiān)控范圍為2%。而ADM13305、ADM13307與ADM1184的可調(diào)輸入在整個溫度范圍內(nèi)的精度高達±0.8%,電阻分壓器的精度為±0.1%,這使得欠壓電平監(jiān)控精度范圍能保持在2%以內(nèi)。
基本時序控制
圖3所示的是如何利用分立器件實現(xiàn)基本的時序控制,此處采用邏輯閾值而不是比較器。12V和5V電源軌是由其它電路產(chǎn)生的。為了確保系統(tǒng)能夠正確工作,必須引入一段時間延遲。這里是通過使用RC(電阻電容)電路來緩慢升高與5V電源串聯(lián)的N溝道FET的柵極電壓而實現(xiàn)的。所選用的RC值可確保FET在達到閾值電壓并導通之前能獲得足夠的延遲時間。3.3V和1.8V電源軌是由線性穩(wěn)壓器ADP120和ADP130產(chǎn)生的。這些電壓的上電時間也是利用RC來進行時序控制的。由于RC能驅(qū)動每個LDO的EN(使能)引腳,因此無需串聯(lián)FET。選定的RC值要確保在EN引腳上的電壓爬升到其閾值之前有足夠的延遲時間(t2,t3)。
這種簡單、低成本的電源時序控制方法只占用很少的電路板面積,因此可用于多種應用。這種方法適合于成本是主要考慮因素、時序要求很簡單,且時序控制電路的精確性不是十分重要的系統(tǒng)。
但許多情況需要比RC延遲電路更高的精確性。此外,這種簡單的解決方案也不允許以結(jié)構(gòu)化的方法處理故障(例如,一個5V電源失效最終將影響到其它電源軌)。
圖3 四路電源系統(tǒng)的基本分立式時序控制
利用IC進行時序控制
市場上有各種各樣的電源時序控制器。有些器件能夠直接實現(xiàn)電源模塊的輸出,并提供多種輸出配置。有些器件內(nèi)置電荷泵電壓發(fā)生器,對于需要對更高電壓軌進行時序控制、卻又缺少高壓源(如12V電源軌)的低壓系統(tǒng)來說,這一點特別有用,能夠驅(qū)動N溝道FET的柵極。許多這類器件具有使能引腳,可以接受來自于按鈕開關或控制器的外部信號,以便在需要時重新啟動時序控制或關斷所控制的電壓軌。
圖4所示的是如何使用電源時序控制器 ADM6820和ADM1086精確且可靠地對系統(tǒng)中的電源軌進行時序控制。內(nèi)部比較器檢測電壓軌何時會超過精密的設定電平,經(jīng)過可編程的上電延遲之后,產(chǎn)生輸出,使線性穩(wěn)壓器ADP120和ADP130能按照期望的時序工作。閾值通過電阻比值來設定,延遲通過電容來設定。
圖4 使用監(jiān)控IC對四路電源系統(tǒng)進行時序控制
集成的電源系統(tǒng)管理
當今的復雜系統(tǒng)往往需要多達四路電壓,并需要對低壓內(nèi)核電壓進行更精確的監(jiān)控,還需要對電壓軌的上電與斷電時序進行監(jiān)控。這些低壓需要被精確監(jiān)控,然后以正確的時序上電和斷電,同時確保每個電壓軌之間正確的延時。例如,如果電源電壓下降到閾值以下或者打印機ASIC中的電源沒有正確的上電或斷電,那么器件的工作將會出現(xiàn)異常,可能導致數(shù)據(jù)丟失。
圖5 打印機應用中的上電與斷電時序
ADM1186系列產(chǎn)品在整個溫度范圍內(nèi)提供±0.8%的電壓閾值監(jiān)控精度,這對低電壓軌的監(jiān)控至關重要。本文將在打印機應用的實例中說明這種監(jiān)控,如圖5所示。ADM1186還利用數(shù)字內(nèi)核實現(xiàn)了上電和斷電(順序相反)的時序控制,無需軟件支持。對于ADM1186-1來說,多個器件可通過級聯(lián)來對8、12、16路乃至更多的電源進行上電和斷電時序控制。通過專用的電容可編程時序引腳設置,能夠更容易且更精確的控制電源之間的延時,無需在電源軌監(jiān)控引腳增加電容。利用這一靈活性,就可以獨立而精確的控制時序延時以及器件的故障響應時間。除了時序延時,ADM1186還提供可編程消隱延時,使設計人員可為電源設置最大時限,在啟動后將電源電壓提升到欠壓閾值之上。
四通道電壓監(jiān)控器與電源時序控制器
表2 四通道電壓監(jiān)控器與電源時序控制器
有些系統(tǒng)具有許多電源軌,采用這種使用大量IC,并利用電阻和電容來設置時序和閾值電平的分立解決方案會變得過于復雜、成本過高,且不能提供適當?shù)男阅堋?/p>
具有八路電壓軌的系統(tǒng)會需要復雜的上電時序控制。每路電壓軌都要監(jiān)控,以免出現(xiàn)欠壓或過壓故障。發(fā)生故障時,根據(jù)故障機制,需要關斷所有電源電壓,或初始化電源關斷時序。此外,必須根據(jù)控制信號的狀態(tài)采取相應措施,并根據(jù)電源的狀態(tài)產(chǎn)生標志位。如果使用分立器件和簡單的IC來實現(xiàn)如此復雜的電路,可能需要數(shù)以百計的器件,這將會占用很大的電路板空間,并耗費大量成本。
在具有四路或更多電源的系統(tǒng)中,使用集中式器件來管理電源比較可取。圖6所示的是采用這種方法的一個例子。
圖6 用于八路電源系統(tǒng)的集中式時序控制與監(jiān)控解決方案
集中式監(jiān)測和時序控制
ADM106x Super SequencerTM11系列產(chǎn)品使用比較器,但是有一些不同之處。每個輸入端都有兩個專用比較器,以實現(xiàn)欠壓和過壓檢測,這樣便可對DC/DC轉(zhuǎn)換器ADP1821和ADP2105以及LDO ADP1715所產(chǎn)生的電壓軌提供窗口監(jiān)控。在電源上電之前,欠壓故障是正常的狀態(tài),因此這個指示可用于時序控制。過壓狀態(tài)通常表示一種嚴重故障,如FET或電感器短路,必須立即采取行動。
通常,系統(tǒng)中包含的電源數(shù)量越多,系統(tǒng)就越復雜,因此精度限制也越嚴格。另外,在低壓狀態(tài)下,例如1.0V和0.9V,利用電阻來設定精確的閾值也變得很有挑戰(zhàn)性。雖然對于5V電源軌來說,可接受10%的容差,但對1V電源軌來說,這個容差是不能接受的。ADM1066在最壞情況下允許輸入檢測器比較器的閾值被設定在1%范圍內(nèi),而與電壓(低至0.6V)無關,并可工作在該器件允許的整個溫度范圍內(nèi)。這可以增加每個比較器的內(nèi)部毛刺濾波和遲滯。其邏輯輸入可用于啟動上電時序控制、關閉所有電源軌,或執(zhí)行其它功能。
比較器的信息被送入功能強大和靈活的狀態(tài)機內(nèi)核,這些信息具有以下幾種用途。
時序控制:當最近的使能電源的輸出電壓進入到窗口中時,時間延遲被觸發(fā),以按照上電時序接通下一個電源軌??赡苄枰哂卸嘀厣想娕c斷電時序,或具有差別較大的上電與斷電時序的復雜時序控制。
超時:如果已經(jīng)使能的電源軌沒有按照預期上電,可以執(zhí)行一套適當?shù)膽獙Υ胧ɡ绠a(chǎn)生一個中斷信號或關閉系統(tǒng))。相比之下,純模擬的解決方案只會令系統(tǒng)簡單地掛在時序中的那一點上。
監(jiān)控:如果任一電源軌上的電壓超出了預設的窗口,可以根據(jù)發(fā)生故障的電源軌、故障類型和當前的工作模式,采取適當?shù)膽獙Υ胧:形迓芬陨想娫吹南到y(tǒng)通常都相當昂貴,因此全面的故障保護是極為重要的。
即使系統(tǒng)中的最高電壓只有3V,仍然可以通過內(nèi)置電荷泵產(chǎn)生大約12V的柵極驅(qū)動電壓,從而允許輸出能夠直接驅(qū)動串聯(lián)的N溝道FET。其它額外的輸出能夠使能或關斷DC/DC轉(zhuǎn)換器或穩(wěn)壓器,使輸出內(nèi)部上拉至其中一個輸入電壓或內(nèi)置的穩(wěn)壓電壓。輸出也可以被指定為開漏輸出。輸出可以用作狀態(tài)信號,如電源良好或上電復位。如果需要的話,狀態(tài)LED可以直接由輸出來驅(qū)動。
電源調(diào)整
除了能夠監(jiān)控多路電壓軌并提供復雜的時序控制解決方案之外,ADM1066等集成電源管理器件還可以用于暫時或永久調(diào)整某些電壓軌電壓。通過調(diào)節(jié)器件上調(diào)整節(jié)點或反饋節(jié)點上的電壓,可以改變DC/DC轉(zhuǎn)換器或穩(wěn)壓器的電壓輸出。一般來說,通過介于輸出與地之間的電阻分壓器,來調(diào)整/反饋引腳上設置的標稱電壓,從而設置標稱輸出電壓。通過切換反饋回路中的額外電阻或控制可變電阻的簡單方案,可以改變調(diào)整/反饋電壓,進而調(diào)節(jié)輸出電壓。
ADM1066具有DAC(數(shù)模轉(zhuǎn)換器),可以直接控制調(diào)整/反饋節(jié)點。為了實現(xiàn)最大的效率,這些DAC不會在地與最大電壓間工作,而是會以標稱的調(diào)整/反饋電平為中心點,在一個相當窄的窗口中工作。衰減電阻器的阻值可決定電源模塊輸出的遞增變化和DAC的每個LSB變化。這種開環(huán)調(diào)節(jié)方式提供了提升容限或降低容限的標準,相當于那些利用參考電路中的數(shù)字電阻切換所獲得的結(jié)果,而且可以將輸出調(diào)節(jié)到類似的精度。
ADM1066還包含一個用來測量電源電壓的12bit ADC(模數(shù)轉(zhuǎn)換器),以實現(xiàn)閉環(huán)電源電壓調(diào)節(jié)方案。通過給定的DAC輸出設置,電源模塊的電壓輸出可由ADC采集轉(zhuǎn)換,并利用軟件與所設定的目標電壓進行比較。這樣,便可調(diào)整DAC來校準電壓輸出,使其盡可能接近目標電壓。這個閉環(huán)方案提供了一個非常精確的電源調(diào)節(jié)方法。使用閉環(huán)方法時,與外部電阻的精度無關。在圖6中,DC/DC4的輸出電壓便是利用其中一個內(nèi)置DAC來進行調(diào)整的。
這種電源調(diào)節(jié)方案有兩個主要應用。首先是電源容限的概念,也就是說,當電源處于規(guī)定的設備電源電壓范圍邊界時,測試系統(tǒng)對電源做出的反應。數(shù)據(jù)通信、電信、蜂窩電話基礎設施、服務器和存儲區(qū)域網(wǎng)絡設備等制造商在將其系統(tǒng)交付給終端客戶之前,必須進行嚴格的測試。系統(tǒng)中的所有電源電壓都應該在一定的容差范圍內(nèi)工作(例如±5%、±10%)。通過確保正確運行所進行的測試,電源容限允許所有的內(nèi)置電源被調(diào)節(jié)到容差范圍的上限和下限。具有電源調(diào)節(jié)能力的集中式電源管理器件,可用于進行這種容限測試,同時使得只需完成一次測試所需的額外器件最少、PCB面積最小——在制造商的測試地點進行容限測試期間。
通常需要進行全范圍測試,也就是,在設備的整個工作電壓范圍和整個溫度范圍內(nèi)進行測試, ADM1062不僅集成了閉環(huán)電源容限電路,還集成了溫度檢測和回讀功能。
電源調(diào)節(jié)方案的第二個應用是補償工作現(xiàn)場的系統(tǒng)電源波動。造成電源波動的原因有許多種,就短期而言,當溫度改變時,電壓的輕微變化是十分常見的;就長期來說,某些器件參數(shù)可能會隨產(chǎn)品的長期使用而產(chǎn)生輕微的漂移,這也可能導致電壓的漂移。ADC及DAC環(huán)路可被周期性地激活(例如每10 s、30 s或60 s),再加上軟件校準環(huán)路,就可以使電壓保持在其應有的范圍內(nèi)。
靈活性
ADM1066具有內(nèi)置非易失性存儲器,在系統(tǒng)開發(fā)過程中,當時序控制與監(jiān)控需求不斷發(fā)展時,可以根據(jù)需要進行多次重新編程,這意味著硬件設計可以在產(chǎn)品原型設計的初期完成,而監(jiān)控和時序控制的優(yōu)化可以隨著項目的進展來進行。
數(shù)字溫度和電壓測量等功能可以簡化并加速評估過程;容限工具則允許在開發(fā)過程中對電源電壓進行調(diào)節(jié)。因此,當關鍵的ASIC、FPGA或處理器也正處在開發(fā)階段,且由于推出新版本的芯片,引起電源電壓電平或時序需求不斷變化,可以通過軟件14 GUI(圖形用戶界面)來完成簡單的調(diào)節(jié)。在幾分鐘內(nèi)對電源管理器件進行重新編程,將變化因素考慮進去,而無需對電路板上的器件進行物理級改變,也不會發(fā)生需要重新設計硬件等更糟的狀況。
Super Sequencer器件
表3 Super Sequencer器件
結(jié)論
電源軌數(shù)量的不斷增加和電源時序控制技術的興起以及更低電壓軌的發(fā)展趨勢,增加了許多類型的設備和系統(tǒng),從筆記本電腦、個人計算機、機頂盒、汽車系統(tǒng)到服務器與存儲設備、蜂窩電話基站以及因特網(wǎng)路由器與交換機系統(tǒng),對電源設計工程師的要求也隨之增加。隨著內(nèi)核電壓的不斷下降,為了確保魯棒性與高可靠的運行,對這些電壓進行高精度監(jiān)控的需求變得更加關鍵。更嚴格的測試程序、信息更新以及快速且簡單的編程能力也都受到關注,特別是中高擋系統(tǒng)。為了提升系統(tǒng)的魯棒性和可靠性,并加入這些至關重要的新特性,市面上已推出許多新的電源管理器,幫助用戶安全、有效地解決這些問題,同時減小電路板面積,并縮短產(chǎn)品上市時間。
YINLIANBAO? ?高效化、小型化的適配器電源芯片U8623? ? ? ? ? 應對現(xiàn)今適配器的高效化,小型化趨勢,深圳銀聯(lián)寶科技順勢推出了一款恒...
光與照明息息相關,燈具的發(fā)展應該其實就是在模擬自然光的變化,追求更高的調(diào)光深度和精度。品控是燈光保障的重要問題,也需要芯片產(chǎn)品提供更高的解決方案。今天給...
將準諧振反激電源與恒流源結(jié)合,可以實現(xiàn)一種既具有高效率、低噪聲和低電磁干擾,又能輸出恒定電流的電源。開關電源芯片U6116支持準諧振降壓恒流輸出應用,僅...
開關電源是電源供應器的一種,其功能是將一個位準的電壓,透過不同形式的架構(gòu)轉(zhuǎn)換為用戶端所需求的電壓或電流。
開關電源芯片U6018X有U6018A和U6018B兩款,在90~264Vac下,U6018A典型功率18W,U6018B典型功率24W;在175-26...
2024-12-03 標簽:轉(zhuǎn)換器開關電源電源芯片 201 0
市場飽和怎么破局?有在小家電賽道上耕耘已久的小伙伴,這兩年投向了兒童廚具這個品項上。兒童廚具不僅僅是塑料玩具,而是迷你縮小版的真廚具,是真的能把食物做熟...
歐創(chuàng)芯電源芯片OCE200產(chǎn)品介紹
隨著科技的飛速發(fā)展,電子設備已經(jīng)成為我們生活的重要組成部分,無論是觀看電視、使用筆記本電腦,還是享受智能家居的便利,以及智慧出行、智慧通訊和交通都離不開...
品牌合作 | 東科電源芯片進入安克、聯(lián)想、雷蛇等知名品牌供應鏈
前言東科半導體(安徽)股份有限公司成立于2011年,是國內(nèi)為數(shù)不多的集研發(fā)、設計、生產(chǎn)、銷售為一體的集成電路科技創(chuàng)新型企業(yè),是國家級專精特新小巨人企業(yè)。...
PPEC inside 超導 / 磁鐵電源,以搭積木的方式快速滿足您的磁鐵供電需求
1、PPECinside超導/磁鐵電源森木磊石PPECinside超導/磁鐵電源產(chǎn)品通過對超導/磁鐵電源基礎模塊的任意串并聯(lián),使用搭積木的方式進行組合,...
2024-12-16 標簽:數(shù)字電源電源模塊電源系統(tǒng) 104 0
24W電源芯片U6120D 實踐更高的性能與更低的成本 STEP01 芯片綠色節(jié)能模式?是指通過優(yōu)化芯片設計和技術手段,以減少芯片在運行過程中的能耗,從...
FP7126雙路調(diào)光調(diào)色IC 一顆芯片切多路 單節(jié)鋰電池降壓恒流 LED驅(qū)動電源芯片
遠翔DC-DC降壓恒流LED雙路調(diào)光IC FP7126特點 遠翔DC-DC降壓恒流LED調(diào)光IC FP7126是一款高性能的LED驅(qū)動芯片,專為舞臺燈等...
單節(jié)鋰電池降壓恒流芯片 FP7130 LED驅(qū)動電源芯片 寬電壓支持范圍 DC65V
寬電壓范圍支持 :可以滿足不同電壓等級的磁吸燈臺燈需求。通過調(diào)節(jié)電源電壓或電流,可以輕松地控制燈光的亮度,實現(xiàn)精細調(diào)節(jié)。 FP7130是一款專為LED恒...
芯茂微【LPKSF001】24V 2A適配器充電器電源芯片分析報告
深圳市三佛科技有限公司分享LPKSF001電源Demo評估測試報告:本測試報告依照《家電24V-2A技術規(guī)格書》對電源的輸入特性、輸出特性、保護特性、E...
東芝公司立志于2030年前在全球電源芯片市場中占據(jù)至少兩位數(shù)的市場份額,以此扭轉(zhuǎn)其相較于競爭對手的落后局面。東芝電子設備及存儲業(yè)務總經(jīng)理Noriyasu...
編輯推薦廠商產(chǎn)品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯(lián)網(wǎng) | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發(fā)電 | UPS | AR | 智能電網(wǎng) | 國民技術 | Microchip |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |