資料介紹
大家有木有發(fā)現(xiàn),在比較在不同速度下工作的系統(tǒng)、或者查看軟件定義系統(tǒng)如何處理不同帶寬的信號時,噪聲頻譜密度(NSD)可以說比信噪比(SNR)更為有用。雖然它不能取代其他規(guī)格,但會是分析工具箱中的一個有用參數(shù)指標。
探索——我的目標頻段內(nèi)有多少噪聲?
數(shù)據(jù)轉換器數(shù)據(jù)手冊上的SNR表示滿量程信號功率與其他所有頻率的總噪聲功率之比。
現(xiàn)在考慮一個簡單情況來比較SNR和NSD,如圖1所示。假設ADC時鐘頻率為75 MHz。對輸出數(shù)據(jù)運行快速傅里葉變換(FFT),圖中顯示的頻譜為從直流到37.5 MHz。本例中,目標信號是唯一的大信號,且碰巧位于2 MHz附近。對于白噪聲(大部分情況下包含量化噪聲和熱噪聲)而言,噪聲均勻分布在轉換器的奈奎斯特頻段內(nèi),本例中為直流至37.5 MHz。
圖1. 9 dB調(diào)制增益的圖形表示:保留全部信號,丟棄7?8噪聲
由于目標信號在直流與4 MHz之間,故可相對簡單地應用數(shù)字后處理以濾除或拋棄一切高于4 MHz的頻率(僅保留紅框中的內(nèi)容)。這里將需要丟棄7?8噪聲,保留所有信號能量,從而有效SNR改善9 dB。換句話說,如果知道信號位于頻段的一半中,那么事實上可以在僅消除噪聲的同時,丟棄另一半頻段。
一條有用的經(jīng)驗法則:存在白噪聲時,調(diào)制增益可使過采樣信號的SNR額外改善3 dB/倍頻程。在圖1示例中,可將此技巧應用到三個倍頻程中(系數(shù)為8),從而使SNR改善9 dB。
當然,如果信號處于直流和4 MHz之間某處,那么就不需要使用快速75 MSPS ADC來捕捉信號。只需9 MSPS或10 MSPS便能滿足奈奎斯特采樣定理對帶寬的要求。事實上,可以對75 MSPS采樣數(shù)據(jù)進行1/8抽取,產(chǎn)生9.375 MSPS有效數(shù)據(jù)速率,同時保留目標頻段內(nèi)的噪底。
正確進行抽取很重要。如果只是每8個樣本丟棄7個,那么噪聲會折疊或混疊回到目標頻段內(nèi),這樣將得不到任何SNR改善。必須先濾波再抽取,才能實現(xiàn)調(diào)制增益。
即便如此,雖然理想的濾波器會消除一切噪聲,實現(xiàn)理想3 dB/倍頻程的調(diào)制增益,但實際濾波器不具備此類特性。在實踐中,所需的濾波器阻帶抑制量與試圖實現(xiàn)多少調(diào)制增益成函數(shù)關系。另外應注意,“3 dB/倍頻程”的經(jīng)驗法則是基于白噪聲假設。這是一個合理的假設,但并非適用于一切情況。
一個重要的例外情況是動態(tài)范圍受非線性誤差或通帶中的其他雜散交調(diào)分量影響。在這些情況下,“濾波并丟棄”方法不一定能濾除雜散分量,可能需要更細致的頻率算法。
方法——將SNR和采樣速率轉換為噪聲頻譜密度
當頻譜中存在多個信號時,比如FM頻段內(nèi)有許多電臺,情況會變得愈加復雜。若要恢復任一信號,更重要的不是數(shù)據(jù)轉換器的總噪聲,而是落入目標頻段內(nèi)的轉換器噪聲量。這就需要通過數(shù)字濾波和后處理來消除所有帶外噪聲。
有多種方法可以減少落入紅框內(nèi)的噪聲量。其中一種是選擇具有更好SNR(噪聲更低)的ADC。或者也可以使用相同SNR的ADC并提供更快的時鐘(比如150 MHz),從而讓噪聲分布在更寬的帶寬內(nèi),使紅框內(nèi)的噪聲更少。
問題——快速比較轉換器濾除噪聲的性能,有沒有比SNR更好的規(guī)格?
此時就會用到噪聲頻譜密度(NSD)。用頻譜密度(通常以相對于每赫茲帶寬的滿量程的分貝數(shù)為單位,即dBFS/Hz)來刻畫噪聲,便可比較不同采樣速率的ADC,從而確定哪個器件在特定應用中可能具有最低噪聲。
表1以一個70 dB SNR的數(shù)據(jù)轉換器為例,說明隨著采樣速率從100 MHz提高到2 GHz,NSD有何改善。
表1. 改變一個70 dB SNR的ADC的采樣速率
表2顯示了部分極為不同的轉換器的多種SNR和采樣速率組合,但所有組合都具有相同的NSD,因此每一種組合在1 MHz通道內(nèi)都將具有相同的總噪聲。注意,轉換器的實際分辨率可能遠高于有效位數(shù),因為很多轉換器希望具有額外的分辨率以確保量化噪聲對NSD的影響可忽略不計。
表2.幾種極為不同的轉換器均在1 MHz帶寬內(nèi)提供95 dBSNR;SNR計算假定為白噪底(無雜散影響)
在一個傳統(tǒng)的單載波系統(tǒng)中,使用10 GSPS轉換器捕捉1 MHz信號似乎很滑稽,但在多載波軟件定義系統(tǒng)中,那可能是設計人員恰恰會做的事情。一個例子是有線機頂盒,其可能采用2.7 GSPS至3 GSPS全頻調(diào)諧器來捕捉包含數(shù)百電視頻道的有線信號,每個頻道的帶寬為數(shù)MHz。對于數(shù)據(jù)轉換器而言,噪聲頻譜密度的單位通常為dBFS/Hz,即相對于每Hz滿量程的dB。這是一種相對量度,提供了對噪聲電平的某種“折合到輸出端”測量。還有采用dBm/Hz甚至dB mV/Hz為單位來提供更為絕對的量度,即對數(shù)據(jù)轉換器噪聲的“折合到輸入端”測量。
SNR、滿量程電壓、輸入阻抗和奈奎斯特帶寬也可用來計算ADC的有效噪聲系數(shù),但這涉及到相當復雜的計算,可參見ADI指南《ADC噪聲系數(shù)——一個經(jīng)常被誤解的參數(shù)》。
思考——過采樣替代方法
在較高的采樣速率下使用ADC通常意味著較高的功耗——無論是ADC自身抑或后續(xù)數(shù)字處理。表1顯示過采樣對NSD有好處,但問題依然存在:“過采樣真的值得嗎?”
如表2所示,使用噪聲較低的轉換器也能實現(xiàn)更好的NSD。捕捉多載波的系統(tǒng)需要工作在較高采樣速率下,因此會對每個載波進行過采樣。不過,過采樣仍有很多優(yōu)勢。
簡化抗混疊濾波——過采樣會將較高頻率的信號(和噪聲)混疊到轉換器的奈奎斯特頻段內(nèi)。所以為了混疊影響,這些信號需要在AD轉換前被濾波器濾除。這意味著過濾器的過渡帶必須位于最高目標捕捉頻率(FIN)和該頻率的混疊(FSAMPLE、FIN)之間。
隨著FIN越來越接近FSAMPLE/2,此抗混疊濾波器的過渡帶變得非常窄,需要極高階的濾波器。2至4倍過采樣可大幅減少模擬域中的這個限制,并將負擔置于相對容易處理的數(shù)字域中。
即便使用完美的抗混疊濾波器,要最大程度減少轉換器失真產(chǎn)物折疊的影響也會帶來不足,在ADC中產(chǎn)生雜散和其他失真產(chǎn)物,包括某些極高階諧波。這些諧波還將在采樣頻率內(nèi)折疊,可能返回帶內(nèi),限制目標頻段內(nèi)的SNR。在較高的采樣速率下,所需頻段成為奈奎斯特帶寬的一小部分,因而降低了折疊發(fā)生的概率。值得一提的是,過采樣還有助于可能發(fā)生帶內(nèi)折疊的其他系統(tǒng)雜散(比如器件時鐘源)的頻率規(guī)劃。
調(diào)制增益對任何白噪聲都有影響,包括熱噪聲和量化噪聲,以及來自某些類型時鐘抖動的噪聲。
隨著速度更高的轉換器和數(shù)字處理產(chǎn)品的成熟,系統(tǒng)設計人員更頻繁地使用一定量的過采樣以發(fā)揮這些優(yōu)勢,比如噪底和FFT。
用戶可能很希望通過檢查頻譜曲線以及查看噪底深度來比較轉換器,如圖2所示。進行此類比較時,重要的是需記住頻譜曲線取決于快速傅里葉變換的大小。較大的FFT會將帶寬分成更多的頻率倉,每個頻率倉內(nèi)累積的噪聲會變少。這種情況下,頻譜曲線會顯示較低的噪底,但這只是一個繪圖偽像。事實上,噪聲頻譜密度并未發(fā)生改變(這是改變頻譜分析儀分辨率帶寬的信號處理等效情況)。
圖2. 524,288樣本FFT和8192樣本FFT的ADC
最終,如果采樣速率等于FFT大小(或者成適當比例),那么比較噪底是可以接受的,否則可能產(chǎn)生誤解。這里,NSD規(guī)格可用于直接比較。
特例——當噪底不平坦時……
到目前為止,關于調(diào)制增益和過采樣的討論都假設噪聲在轉換器的奈奎斯特頻帶內(nèi)是平坦的。這在很多情況下是一個合理的近似,但也有某些情況不適用該假設。
例如,之前已經(jīng)提到調(diào)制增益并不適用于雜散,雖然過采樣系統(tǒng)在頻率規(guī)劃和雜散處理方面可能有一些優(yōu)勢。此外,1/f噪聲和部分類型的振蕩器相位噪聲具有頻譜整形性能,調(diào)制增益計算不適用于此類情況。
噪聲不平坦的一個重要情形是使用∑-Δ型轉換器時。
∑-Δ型調(diào)制器通過對反饋回路(量化器輸出)調(diào)制,進而實現(xiàn)對量化噪聲整形,從而降低目標頻段內(nèi)的噪聲,但代價是增加帶外噪聲,如圖3所示。
圖3. 目標頻段和噪聲整形
即使不進行完整分析,也可以看到,對于∑-Δ型調(diào)制器,使用NSD作為確定帶內(nèi)可用動態(tài)范圍的規(guī)格尤為有效。圖4顯示的是高速帶通∑-Δ型ADC放大后的噪底曲線。在75 MHz目標頻段內(nèi)(中心頻率為225 MHz),噪聲為-160 dBFS/Hz左右,SNR超過74 dBFS。
圖4. AD6676—噪底
舉例——具有總結性的范例
為了總結并強化我們已經(jīng)討論過的內(nèi)容,現(xiàn)在看圖5所示曲線。本例考慮六款ADC——
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 用噪聲頻譜密度評估軟件定義系統(tǒng)中的ADC
- 開關電源噪聲之EMC電子版資源下載 0次下載
- 寬帶噪聲對時序抖動的影響資料下載
- 什么是相位噪聲?如何測試?資料下載
- 由信號縮小所引起的SNR損失資料下載
- 如何觀察噪聲頻譜密度?資料下載
- 頻譜分析儀是如何工作的?資料下載
- 如何使用NSD評估軟件定義系統(tǒng)中的ADC
- 信噪比到底是什么 19次下載
- 用于16位2.5Gsps高性能DAC的卓越時鐘解決方案 6次下載
- 變壓器空載與短路噪聲頻譜特性分析 1次下載
- 角接觸軸承電機噪聲頻譜分析 1次下載
- 信噪比與噪聲的詳細解析 12次下載
- SNR boost ADC 17次下載
- 電子管放大器信噪比的提高
- 頻譜分析儀怎么測量信噪比 910次閱讀
- 頻譜分析儀如何測量信噪比 727次閱讀
- 如何描述噪聲系數(shù)的大小呢?噪聲系數(shù)該如何測試呢? 954次閱讀
- 噪聲系數(shù)是什么?噪聲系數(shù)在系統(tǒng)中的應用有哪些? 2291次閱讀
- 影響噪聲的不同因素 617次閱讀
- 適用于16位2.5Gsps高性能DAC的不折不扣的時鐘解決方案 1445次閱讀
- 使用噪聲頻譜密度評估軟件定義系統(tǒng)中的ADC 1294次閱讀
- 運放有哪些噪聲源?什么是噪聲頻率曲線? 1531次閱讀
- 現(xiàn)代頻譜儀測量微弱信號的黑科技 3194次閱讀
- 關于轉換器的噪聲聲指數(shù)導致人們的誤解 6515次閱讀
- 濾波電容容值與所濾噪聲頻率的關系 1.6w次閱讀
- 信噪比和靈敏度的關系分析 2.9w次閱讀
- SNR和比特信噪比之間的換算關系之誤碼率曲線制圖流程詳解 3.4w次閱讀
- 正確選擇轉換器需考慮的九項ADC技術指標 2126次閱讀
- 如何測量電容式觸摸屏的實際信噪比 2288次閱讀
下載排行
本周
- 1普中科技HC6800-EM3使用操作手冊
- 21.69 MB | 3次下載 | 2 積分
- 2PCB板EMC/EMI的設計技巧
- 0.20 MB | 3次下載 | 免費
- 32024PMIC市場洞察
- 2.23 MB | 2次下載 | 免費
- 4MSP430?閃存器件引導加載程序(BSL)
- 1.45MB | 2次下載 | 免費
- 5PL4807單節(jié)鋰離子電池充電器中文手冊
- 1.36 MB | 2次下載 | 免費
- 6LTH7充電電路和鋰電池升壓5V輸出電路原理圖
- 0.04 MB | 1次下載 | 免費
- 7HT2120兩節(jié)鋰電池保護板電路
- 0.22 MB | 1次下載 | 免費
- 8BQ77207EVM用戶指南
- 865.23KB | 1次下載 | 免費
本月
- 1XL4015+LM358恒壓恒流電路圖
- 0.38 MB | 148次下載 | 1 積分
- 2PCB布線和布局電路設計規(guī)則
- 0.40 MB | 33次下載 | 免費
- 3智能門鎖原理圖
- 0.39 MB | 13次下載 | 免費
- 4GB/T4706.1-2024 家用和類似用途電器的安全第1部分:通用要求
- 7.43 MB | 11次下載 | 1 積分
- 5JESD79-5C_v1.30-2024 內(nèi)存技術規(guī)范
- 2.71 MB | 10次下載 | 免費
- 6elmo直線電機驅(qū)動調(diào)試細則
- 4.76 MB | 9次下載 | 6 積分
- 7WIFI智能音箱原理圖完整版
- 0.09 MB | 7次下載 | 10 積分
- 8PC1013三合一快充數(shù)據(jù)線充電芯片介紹
- 1.03 MB | 7次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935115次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉換器 PCB layout 設計
- 1.48MB | 420061次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233084次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費下載
- 340992 | 191367次下載 | 10 積分
- 5十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183332次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81581次下載 | 10 積分
- 7Keil工具MDK-Arm免費下載
- 0.02 MB | 73806次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65985次下載 | 10 積分
評論
查看更多