工業(yè)電機(jī)驅(qū)動(dòng)的整個(gè)市場(chǎng)趨勢(shì)是對(duì)更高效率以及可靠性和穩(wěn)定性的要求不斷提高。功率半導(dǎo)體器件制造商不斷在導(dǎo)通損耗和開關(guān)時(shí)間上尋求突破。有關(guān)增加絕緣柵極雙極性晶體管(IGBT)導(dǎo)通損耗的一些權(quán)衡取舍是:更高的短路電流電平、更小的芯片尺寸,以及更低的熱容量和短路耐受時(shí)間。這凸顯了柵極驅(qū)動(dòng)器電路以及過流檢測(cè)和保護(hù)功能的重要性。本文討論現(xiàn)代工業(yè)電機(jī)驅(qū)動(dòng)中成功可靠地實(shí)現(xiàn)短路保護(hù)的問題,同時(shí)提供三相電機(jī)控制應(yīng)用中隔離式柵極驅(qū)動(dòng)器的實(shí)驗(yàn)性示例。
工業(yè)環(huán)境中的短路
工業(yè)電機(jī)驅(qū)動(dòng)器的工作環(huán)境相對(duì)惡劣,可能出現(xiàn)高溫、交流線路瞬變、機(jī)械過載、接線錯(cuò)誤以及其它突發(fā)情況。其中有些事件可能會(huì)導(dǎo)致較大的過流流入電機(jī)驅(qū)動(dòng)器的功率電路中。圖1顯示了三種典型的短路事件。
它們是:
1. 逆變器直通。這可能是由于不正確開啟其中一條逆變器橋臂的兩個(gè)IGBT所導(dǎo)致的,而這種情況又可能是因?yàn)樵馐芰穗姶鸥蓴_或控制器故障。它也可能是因?yàn)楸凵系钠渲幸粋€(gè)IGBT磨損/故障導(dǎo)致的,而正常的IGBT保持開關(guān)動(dòng)作。
2. 相對(duì)相短路。這可能是因?yàn)樾阅芟陆?、溫度過高或過壓事件導(dǎo)致電機(jī)繞組之間發(fā)生絕緣擊穿所引起的。
3. 相線對(duì)地短路。這同樣可能是因?yàn)樾阅芟陆怠囟冗^高或過壓事件導(dǎo)致電機(jī)繞組和電機(jī)外殼之間發(fā)生絕緣擊穿所引起的。
一般而言,電機(jī)可在相對(duì)較長(zhǎng)的時(shí)間內(nèi)(毫秒到秒,具體取決于電機(jī)尺寸和類型)吸收極高的電流;然而,IGBT——工業(yè)電機(jī)驅(qū)動(dòng)逆變器級(jí)的主要部分——短路耐受時(shí)間為微秒級(jí)。
圖1. 工業(yè)電機(jī)驅(qū)動(dòng)中的典型短路事件
IGBT短路耐受能力
IGBT短路耐受時(shí)間與其跨導(dǎo)或增益以及IGBT芯片熱容量有關(guān)。更高的增益導(dǎo)致IGBT內(nèi)的短路電流更高,因此顯然增益較低的IGBT具有較低的短路電平。然而,較高增益同樣會(huì)導(dǎo)致較低的通態(tài)導(dǎo)通損耗,因而必須作出權(quán)衡取舍。
IGBT技術(shù)的發(fā)展正在促成增加短路電流電平,但降低短路耐受時(shí)間這一趨勢(shì)。此外,技術(shù)的進(jìn)步導(dǎo)致使用芯片尺寸更小,縮小了模塊尺寸,但降低了熱容量,以至耐受時(shí)間進(jìn)一步縮短。另外,還與IGBT集電極-發(fā)射極電壓有很大關(guān)系,因而工業(yè)驅(qū)動(dòng)趨向更高直流總線電壓電平的并行趨勢(shì)進(jìn)一步縮減了短路耐受時(shí)間。過去,這一時(shí)間范圍是10 μs,但近年來的趨勢(shì)是在往5 μs3以及某些條件下低至1 μs方向發(fā)展。4 此外,不同器件的短路耐受時(shí)間也有較大的不同,因此對(duì)于IGBT保護(hù)電路而言,通常建議內(nèi)建多于額定短路耐受時(shí)間的額外裕量。
IGBT過流保護(hù)
無論出于財(cái)產(chǎn)損失還是安全方面的考量,針對(duì)過流條件的IGBT保護(hù)都是系統(tǒng)可靠性的關(guān)鍵所在。IGBT并非是一種故障安全元件,它們?nèi)舫霈F(xiàn)故障則可能導(dǎo)致直流總線電容爆炸,并使整個(gè)驅(qū)動(dòng)出現(xiàn)故障。5 過流保護(hù)一般通過電流測(cè)量或去飽和檢測(cè)來實(shí)現(xiàn)。圖2顯示了這些技巧。對(duì)于電流測(cè)量而言,逆變器臂和相位輸出都需要諸如分流電阻等測(cè)量器件,以便應(yīng)付直通故障和電機(jī)繞組故障。控制器和/或柵極驅(qū)動(dòng)器中的快速執(zhí)行跳變電路必須及時(shí)關(guān)斷IGBT,防止超出短路耐受時(shí)間。這種方法的最大好處是它要求在每個(gè)逆變器臂上各配備兩個(gè)測(cè)量器件,并配備一切相關(guān)的信號(hào)調(diào)理和隔離電路。只需在正直流總線線路和負(fù)直流總線線路上添加分流電阻即可緩解這種情況。然而,在很多情況下,驅(qū)動(dòng)架構(gòu)中要么存在臂分流電阻,要么存在相位分流電阻,以便為電流控制環(huán)路服務(wù),并提供電機(jī)過流保護(hù);它們同樣可能用于IGBT過流保護(hù)——前提是信號(hào)調(diào)理的響應(yīng)時(shí)間足夠快,可以在要求的短路耐受時(shí)間內(nèi)保護(hù)IGBT。
圖2. IGBT過流保護(hù)技術(shù)示例
去飽和檢測(cè)利用IGBT本身作為電流測(cè)量元件。原理圖中的二極管確保IGBT集電極-發(fā)射極電壓在導(dǎo)通期間僅受到檢測(cè)電路的監(jiān)控;正常工作時(shí),集電極-發(fā)射極電壓非常低(典型值為1 V至4 V)。
然而,如果發(fā)生短路事件,IGBT集電極電流上升到驅(qū)動(dòng)IGBT退出飽和區(qū)并進(jìn)入線性工作區(qū)的電平。這導(dǎo)致集電極-發(fā)射極電壓快速升高。上述正常電壓電平可用來表示存在短路,而去飽和跳變閾值電平通常在7 V至9 V區(qū)域內(nèi)。重要的是,去飽和還可表示柵極-發(fā)射極電壓過低,且IGBT未完全驅(qū)動(dòng)至飽和區(qū)。進(jìn)行去飽和檢測(cè)部署時(shí)需仔細(xì),以防誤觸發(fā)。這尤其可能發(fā)生在IGBT尚未完全進(jìn)入飽和狀態(tài)時(shí),從IGBT關(guān)斷狀態(tài)轉(zhuǎn)換到IGBT導(dǎo)通狀態(tài)期間。消隱時(shí)間通常在開啟信號(hào)和去飽和檢測(cè)激活時(shí)刻之間,以避免誤檢。通常還會(huì)加入電流源充電電容或RC濾波器,以便在檢測(cè)機(jī)制中產(chǎn)生短暫的時(shí)間常數(shù),過濾噪聲拾取導(dǎo)致的濾波器雜散跳變。選擇這些濾波器元件時(shí),需在噪聲抗擾度和IGBT短路耐受時(shí)間內(nèi)作出反應(yīng)這兩者之間進(jìn)行權(quán)衡。
檢測(cè)到IGBT過流后,進(jìn)一步的挑戰(zhàn)便是關(guān)閉處于不正常高電流電平狀態(tài)的IGBT。正常工作條件下,柵極驅(qū)動(dòng)器設(shè)計(jì)為能夠盡可能快速地關(guān)閉IGBT,以便最大程度降低開關(guān)損耗。這是通過較低的驅(qū)動(dòng)器阻抗和柵極驅(qū)動(dòng)電阻來實(shí)現(xiàn)的。如果針對(duì)過流條件施加同樣的柵極關(guān)斷速率,則集電極-發(fā)射極的di/dt將會(huì)大很多,因?yàn)樵谳^短的時(shí)間內(nèi)電流變化較大。由于線焊和PCB走線雜散電感導(dǎo)致的集電極-發(fā)射極電路寄生電感可能會(huì)使較大的過壓電平瞬間到達(dá)IGBT(因?yàn)閂LSTRAY = LSTRAY × di/dt)。因此,在去飽和事件發(fā)生期間,關(guān)斷IGBT時(shí),提供阻抗較高的關(guān)斷路徑很重要,這樣可以降低di/dt以及一切具有潛在破壞性的過壓電平。除了系統(tǒng)故障導(dǎo)致的短路,瞬時(shí)逆變器直通同樣會(huì)發(fā)生在正常工作條件下。此時(shí),IGBT導(dǎo)通要求IGBT驅(qū)動(dòng)至飽和區(qū)域,在該區(qū)域中導(dǎo)通損耗最低。這通常意味著導(dǎo)通狀態(tài)時(shí)的柵極-發(fā)射極電壓大于12 V。IGBT關(guān)斷要求IGBT驅(qū)動(dòng)至工作截止區(qū)域,以便在高端IGBT導(dǎo)通時(shí)成功阻隔兩端的反向高電壓。原則上講,可以通過使IGBT柵極-發(fā)射極電壓下降至0 V實(shí)現(xiàn)該目標(biāo)。但是,必須考慮逆變器臂上低端晶體管導(dǎo)通時(shí)的副作用。導(dǎo)通時(shí)開關(guān)節(jié)點(diǎn)電壓的快速變化導(dǎo)致容性感應(yīng)電流流過低端IGBT寄生密勒柵極-集電極電容(圖3中的CGC)。該電流流過低端柵極驅(qū)動(dòng)器(圖3中的ZDRIVER)關(guān)斷阻抗,在低端IGBT柵極發(fā)射極端創(chuàng)造出一個(gè)瞬變電壓增加,如圖所示。如果該電壓上升至IGBT閾值電壓VTH以上,則會(huì)導(dǎo)致低端IGBT的短暫導(dǎo)通,從而形成瞬態(tài)逆變器臂直通——因?yàn)閮蓚€(gè)IGBT都短暫導(dǎo)通。這一般不會(huì)破壞IGBT,但卻能增加功耗,影響可靠性。
圖3. 密勒感應(yīng)逆變器直通
一般而言,有兩種方法可以解決逆變器IGBT的感應(yīng)導(dǎo)通問題——使用雙極性電源和/或額外的米勒箝位。在柵極驅(qū)動(dòng)器隔離端接受雙極性電源的能力為感應(yīng)電壓瞬變提供了額外的裕量。例如,–7.5 V負(fù)電源軌表示需要大于8.5 V的感應(yīng)電壓瞬變才能感應(yīng)雜散導(dǎo)通。這足以防止雜散導(dǎo)通。另一種方法是在完成關(guān)斷轉(zhuǎn)換后的一段時(shí)間內(nèi)降低柵極驅(qū)動(dòng)器電路的關(guān)斷阻抗。這稱為米勒箝位電路。容性電流現(xiàn)在流經(jīng)較低阻抗的電路,隨后降低電壓瞬變的幅度。針對(duì)導(dǎo)通與關(guān)斷采用非對(duì)稱柵極電阻,便可為開關(guān)速率控制提供額外的靈活性。所有這些柵極驅(qū)動(dòng)器功能都對(duì)整個(gè)系統(tǒng)的可靠性與效率有正面影響。
實(shí)驗(yàn)示例
實(shí)驗(yàn)設(shè)置采用三相逆變器,該逆變器由交流市電通過半波整流器供電。雖然系統(tǒng)最高可采用800 V的直流總線電壓,但本例中的直流總線電壓為320 V。正常工作時(shí),0.5 HP感應(yīng)電機(jī)由開環(huán)V/Hz控制驅(qū)動(dòng)。IGBT采用International Rectifier提供的1200 V、30 A IRG7PH46UDPBF??刂破鞑捎?a target="_blank">ADI的ADSP-CM408F Cortex?-M4F混合信號(hào)處理器。使用隔離式Σ-Δ AD7403調(diào)制器進(jìn)行相位電流測(cè)量,使用ADuM4135實(shí)現(xiàn)隔離式柵極驅(qū)動(dòng)(它是一款磁性隔離式柵極驅(qū)動(dòng)器產(chǎn)品,集成去飽和檢測(cè)、米勒箝位和其它IGBT保護(hù)功能)。
在電機(jī)相位之間,或在電機(jī)相位和負(fù)直流總線之間手動(dòng)開關(guān)短路,進(jìn)行短路測(cè)試。本例中未測(cè)試短路至地??刂破骱碗娫窗迦鐖D5所示。它們均為ADI公司的ADSP-CM408F EZ-kit?6和EV-MCS-ISOINVEP-Z隔離式逆變器平臺(tái)。
圖4. 實(shí)驗(yàn)設(shè)置
圖5. ADI隔離式逆變器平臺(tái)搭配全功能IGBT柵極驅(qū)動(dòng)器
實(shí)驗(yàn)硬件中,通過多種方法實(shí)現(xiàn)IGBT過流和短路保護(hù)。它們分別是:
* 直流總線電流檢測(cè)(逆變器直通故障)
* 電機(jī)相位電流檢測(cè)(電機(jī)繞組故障)
* 柵極驅(qū)動(dòng)器去飽和檢測(cè)(所有故障)
對(duì)于直流總線電流檢測(cè)電路,必須加一個(gè)小型濾波器,避免誤觸發(fā),因?yàn)橹绷骺偩€電流由于潛在的高噪聲電流而斷續(xù)。采用具有3 μs時(shí)間常數(shù)的RC濾波器。檢測(cè)到過流后,其余有關(guān)IGBT關(guān)斷的延遲是通過運(yùn)算放大器、比較器、信號(hào)隔離器、ADSP-CM408F中的跳變響應(yīng)時(shí)間,以及柵極驅(qū)動(dòng)器傳播延遲。這會(huì)額外增加0.4 μs,使得故障至關(guān)斷的總時(shí)間延遲為3.4 μs——遠(yuǎn)低于很多IGBT的短路時(shí)間常數(shù)。
類似的時(shí)序同樣適用于采用AD7403以及ADSP-CM408F處理器上集成式過載檢測(cè)sinc濾波器的電機(jī)相位電流檢測(cè)。采用時(shí)間常數(shù)為3 μs左右的sinc濾波器可良好運(yùn)作。8在這種情況下,其余系統(tǒng)延遲的原因僅會(huì)是跳變信號(hào)內(nèi)部路由至PWM單元以及存在柵極驅(qū)動(dòng)器傳播延遲,因?yàn)檫^載sinc濾波器是處理器的內(nèi)部元件。連同電流檢測(cè)電路或快速數(shù)字濾波器的反應(yīng)時(shí)間,無論使用何種方法,兩種情況下的ADuM4135超短傳播延遲對(duì)實(shí)現(xiàn)有效的快速過流保護(hù)非常重要。
圖6顯示了硬件跳變信號(hào)、PWM輸出信號(hào)和其中一個(gè)逆變器臂的上方IGBT實(shí)際柵極-發(fā)射極波形之間的延遲。圖中可以看到,IGBT開始關(guān)斷后的總延遲約為100 ns。
圖6. 過流關(guān)斷時(shí)序延遲(通道1:柵極-發(fā)射極電壓10 V/div;通道2:來自控制器的PWM信號(hào)5 V/div;通道3:低電平有效跳變信號(hào)5 V/div;100 ns/div)
柵極驅(qū)動(dòng)器去飽和檢測(cè)比上文描述的過流檢測(cè)方法執(zhí)行速度快得多,且對(duì)于限制短路電流所允許上升的上限很重要,從而提升了系統(tǒng)的整體穩(wěn)定性,并超過了可以實(shí)現(xiàn)的水準(zhǔn),哪怕系統(tǒng)帶有快速過流保護(hù)功能。這顯示在圖7中。當(dāng)發(fā)生故障時(shí),電流快速上升——事實(shí)上,電流遠(yuǎn)高于圖中所示,因?yàn)閳D中以帶寬限制20 A電流探針進(jìn)行測(cè)量,僅供參考。去飽和電壓達(dá)到9 V跳變電平,柵極驅(qū)動(dòng)器開始關(guān)斷。顯然,短路的整個(gè)持續(xù)時(shí)間不足400 ns。電流的長(zhǎng)尾表示下方IGBT反并聯(lián)二極管中的續(xù)流導(dǎo)致的感應(yīng)電能。開啟時(shí),去飽和電壓的初始增加是雜散去飽和檢測(cè)電動(dòng)勢(shì)的一個(gè)例子,這是由于集電極-發(fā)射極電壓瞬態(tài)所導(dǎo)致??梢酝ㄟ^增加去飽和濾波器時(shí)間常數(shù),從而增加額外的消隱時(shí)間而消除。
圖7. IGBT短路檢測(cè)
圖8. IGBT短路關(guān)斷
圖8顯示了IGBT上的集電極-發(fā)射極電壓。由于去飽和保護(hù)期間,關(guān)斷的阻抗較大,因此初始受控過沖約為320 VDC總線電壓以上80 V。電流在下游反并聯(lián)二極管中流動(dòng),而電路寄生實(shí)際上使得電壓過沖略高,最高約為420 V。
圖9. 開啟時(shí)的米勒箝位 通道1:柵極-發(fā)射極電壓5 V/div;通道2:來自控制器的PWM信號(hào)5 V/div;通道3:集電極-發(fā)射極電壓100 V/div;200 ns/div
圖9顯示了正常工作時(shí),米勒箝位防止逆變器直通的價(jià)值。
小結(jié)
隨著IGBT的短路耐受時(shí)間下降至1 μs的水平,在極短的時(shí)間內(nèi)檢測(cè)并關(guān)斷過流和短路正變得越來越重要。工業(yè)電機(jī)驅(qū)動(dòng)的可靠性與IGBT保護(hù)電路有很大的關(guān)系。本文羅列了一些處理這個(gè)問題的方法,并提供了實(shí)驗(yàn)結(jié)果,強(qiáng)調(diào)了穩(wěn)定隔離式柵極驅(qū)動(dòng)器IC (比如ADI公司的ADuM4135)的價(jià)值。
-
半導(dǎo)體
+關(guān)注
關(guān)注
334文章
27286瀏覽量
218067 -
電機(jī)驅(qū)動(dòng)
+關(guān)注
關(guān)注
60文章
1215瀏覽量
86722 -
IGBT
+關(guān)注
關(guān)注
1266文章
3789瀏覽量
248876
原文標(biāo)題:工業(yè)電機(jī)驅(qū)動(dòng)如何成功可靠地實(shí)現(xiàn)短路保護(hù)?
文章出處:【微信號(hào):wwygzxcpj,微信公眾號(hào):電機(jī)技術(shù)及應(yīng)用】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論