RM新时代网站-首页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

幾個(gè)氮化鎵GaN驅(qū)動(dòng)器PCB設(shè)計(jì)必須掌握的要點(diǎn)

溫柔WR ? 來(lái)源:溫柔WR ? 作者:溫柔WR ? 2023-03-27 09:42 ? 次閱讀

NCP51820 是一款 650 V、高速、半橋驅(qū)動(dòng)器,能夠以高達(dá) 200 V/ns 的 dV/dt 速率驅(qū)動(dòng)氮化鎵(以下簡(jiǎn)稱“GaN”)功率開(kāi)關(guān)。之前我們簡(jiǎn)單介紹過(guò)氮化鎵GaN驅(qū)動(dòng)器的PCB設(shè)計(jì)策略概要,本文將為大家重點(diǎn)說(shuō)明利用 NCP51820 設(shè)計(jì)高性能 GaN 半橋柵極驅(qū)動(dòng)電路必須考慮的 PCB 設(shè)計(jì)注意事項(xiàng)。

本設(shè)計(jì)文檔其余部分引用的布線示例將使用含有源極開(kāi)爾文連接引腳的 GaNFET 封裝。

VDD 電容

VDD 引腳應(yīng)有兩個(gè)盡可能靠近 VDD 引腳放置的陶瓷電容。如圖 7 所示,較低值的高頻旁路電容(通常為 0.1 μF)應(yīng)與第二個(gè)并聯(lián)電容(1 μF)一起放在最靠近 VDD 引腳的位置。

圖1. NCP51820 VDD 電容布局和布線

所有走線須盡可能短而直??梢允褂眠^(guò)孔,因?yàn)?VDD 電流相對(duì)較低。SGND 返回平面對(duì)于其屏蔽特性以及讓所有信號(hào)側(cè)接地回路保持相同電位很有好處,建議使用。SGND 平面位于第 2 層,使其靠近信號(hào)側(cè)元器件和 NCP51820。所有信號(hào)側(cè)元器件都放在 SGND 平面上,并通過(guò)過(guò)孔連接。VDD 引腳和 VDD 電容之間應(yīng)建立直接連接,最好使用過(guò)孔作為 SGND 平面的返回連接。

如圖1所示,兩個(gè) VDD 電容的接地連接并在一起,并通過(guò)單個(gè)過(guò)孔連接到 SGND 平面。如果可能,最好使用不間斷的實(shí)心 SGND 接地平面,以免形成接地環(huán)路。建議將“安靜”的 SGND 平面延伸到 NCP51820 下方,以幫助屏蔽驅(qū)動(dòng)器 IC,使其不受噪聲影響。注意在圖1中,SGND 平面沒(méi)有延伸到 NCP51820 柵極驅(qū)動(dòng)器輸出引腳下方。這是有意為之,目的是避免噪聲從柵極驅(qū)動(dòng) di/dt 峰值拉電流和灌電流耦合到 SGND 平面中。

VBST 電容和二極管、VDDH 和 VDDL 旁路電容

VBST 電容應(yīng)盡可能靠近 VBST 引腳放置。VBST 電容返回引腳應(yīng)連接到 GaNFET 的驅(qū)動(dòng)器 SW 引腳、VDDH 返回引腳和源極開(kāi)爾文引腳。每個(gè)連接都是通過(guò)過(guò)孔接到 HS 柵極返回平面,如圖2所示。務(wù)必注意,不應(yīng)從功率級(jí)開(kāi)關(guān)節(jié)點(diǎn)接回到 NCP51820。請(qǐng)勿將 VBST 電容連接到功率級(jí)開(kāi)關(guān)節(jié)點(diǎn)?!伴_(kāi)關(guān)節(jié)點(diǎn)”的唯一連接是通過(guò) HS GaNFET 源極開(kāi)爾文引腳。

HS 柵極返回平面的設(shè)計(jì)應(yīng)注意,不得與功率級(jí)開(kāi)關(guān)節(jié)點(diǎn)發(fā)生重疊或相互作用。同樣,LS 柵極返回平面的設(shè)計(jì)應(yīng)注意,不得與 LS GaNFET 電源地發(fā)生重疊或相互作用。請(qǐng)勿將 SGND 平面放在 VBST 二極管或 VBST 電容下方,因?yàn)?VBST 二極管的陰極上存在高 dV/dt,它可能會(huì)將噪聲注入 SGND 平面。

圖2. NCP51820 VBST 電容和二極管、VDDH 和 VDDL 電容

VDDH 電容應(yīng)盡可能靠近 VDDH 引腳放置。如圖2所示,VDDH 電容返回引腳應(yīng)通過(guò)過(guò)孔連接到 HS 柵極返回平面(與 VBST 電容共用一個(gè)雙過(guò)孔連接)。

VDDL 電容應(yīng)盡可能靠近 VDDL 引腳放置。如圖2所示,VDDL 電容返回引腳應(yīng)通過(guò)過(guò)孔連接到 LS 柵極返回平面。VDDL 電容返回引腳必須連接到驅(qū)動(dòng)器上的 PGND 引腳。VDDL 電容返回引腳通過(guò)過(guò)孔連接到 LS 柵極返回平面,該平面也通過(guò)過(guò)孔連接到驅(qū)動(dòng)器 PGND 引腳。

由于柵極驅(qū)動(dòng)電流峰值很高,并且為了降低過(guò)孔寄生電感,VBST、VDDH 和 VDDL 需要多個(gè)過(guò)孔。在此示例中,每個(gè) GaNFET 柵極返回連接使用四個(gè)過(guò)孔。這是一個(gè)合理的折衷考慮,一方面能在 NCP51820 柵極驅(qū)動(dòng)器返回引腳與 GaNFET 返回引腳之間獲得低阻抗連接,另一方面能保持實(shí)心返回平面和良好的屏蔽完整性。如果可能,最好使用導(dǎo)電材料填充的過(guò)孔,因?yàn)槠湎嚓P(guān)電感更低。

柵極驅(qū)動(dòng)布線

當(dāng) NCP51820 向 HS GaNFET 柵極提供電流時(shí),該柵極電流來(lái)自 VDDH 調(diào)節(jié)器旁路電容中儲(chǔ)存的電荷。如圖3所示,拉電流流經(jīng) HO 驅(qū)動(dòng)器源極阻抗和柵源電阻,進(jìn)入 GaNFET 柵極。然后,電流從 GaNFET 源極開(kāi)爾文引腳返回,又回到 VDDH 旁路電容。

圖3. 高壓側(cè)柵極驅(qū)動(dòng)拉電流

當(dāng) NCP51820 從 HS GaNFET 吸收電流時(shí),該電流來(lái)自柵源電容中儲(chǔ)存的能量。如圖4所示,灌電流從 HS GaNFET 柵極流出,經(jīng)過(guò)柵極灌電流電阻、HO SINK 驅(qū)動(dòng)器阻抗和 SW 引腳,回到 GaNFET 源極開(kāi)爾文引腳。找元器件現(xiàn)貨上唯樣商城!

圖4. 高壓側(cè)柵極驅(qū)動(dòng)灌電流

當(dāng) NCP51820 向 LS GaNFET 柵極提供電流時(shí),該柵極電流來(lái)自 VDDL 調(diào)節(jié)器旁路電容中儲(chǔ)存的電荷

圖5. 低壓側(cè)柵極驅(qū)動(dòng)拉電流

當(dāng) NCP51820 從 LS GaNFET 吸收電流時(shí),該電流來(lái)自柵源電容中儲(chǔ)存的能量。如圖6所示,灌電流從 LS GaNFET 柵極流出,經(jīng)過(guò)柵極灌電流電阻、LO SINK 驅(qū)動(dòng)器阻抗和 PGND 引腳,回到 GaNFET 源極開(kāi)爾文引腳。

圖6. 低壓側(cè)柵極驅(qū)動(dòng)灌電流

GaNFET 能以高開(kāi)關(guān)頻率工作,漏源切換期間會(huì)出現(xiàn)高 dV/dt(100 V/ns 及更高)。GaN 的柵源導(dǎo)通閾值較低 (<2 V),因此柵極驅(qū)動(dòng)拉電流和灌電流路徑必須盡可能保持短而直,以減輕走線寄生電感的不良影響。柵極環(huán)路中的過(guò)大寄生電感可能導(dǎo)致超過(guò)柵源閾值電壓的柵極振蕩或高頻振鈴。柵極驅(qū)動(dòng)和返回路徑中的過(guò)孔只有在絕對(duì)必要時(shí)才應(yīng)使用。最好使用導(dǎo)電材料填充的過(guò)孔,因?yàn)槊總€(gè)這種過(guò)孔的電感要小得多。在柵極電阻和相關(guān)布線下方使用載流返回平面,以在拉電流和灌電流路徑正下方提供一個(gè)返回路徑,有助于減少環(huán)路電感。

NCP51820 高壓側(cè)和低壓側(cè)驅(qū)動(dòng)在內(nèi)部相互隔離。對(duì)于高壓端,SW 引腳必須與功率開(kāi)關(guān)節(jié)點(diǎn)隔離,以防止開(kāi)關(guān)噪聲注入柵極驅(qū)動(dòng)路徑,并且它只能連接到高壓側(cè) GaNFET 上的 SK 引腳。源極開(kāi)爾文引腳和電源引腳之間的開(kāi)爾文連接是 NCP51820 SW 引腳和功率級(jí)開(kāi)關(guān)節(jié)點(diǎn)之間的唯一電氣連接,如圖3和圖4所示。同樣,低壓側(cè)柵極驅(qū)動(dòng)的布線應(yīng)使 NCP51820 PGND 引腳與功率級(jí) PGND 隔離,并且只能連接到低壓側(cè) GaNFET 的 SK。設(shè)計(jì)目標(biāo)是避免電源 PGND 噪聲注入低壓側(cè)柵極驅(qū)動(dòng)路徑。在低壓側(cè) GaNFET 內(nèi)部,SK 引腳和電源引腳之間存在開(kāi)爾文連接,它是 NCP51820 PGND 和電源 PGND 之間的實(shí)際連接,如圖5和圖6所示。

在設(shè)計(jì)允許的范圍內(nèi),HS 和 LS 柵極走線的長(zhǎng)度應(yīng)盡可能相等。這有助于確保兩個(gè) GaNFET 具有相似的柵極驅(qū)動(dòng)阻抗。高壓側(cè)和低壓側(cè) GaNFET 交錯(cuò)對(duì)齊具有雙重作用:一是使得柵極驅(qū)動(dòng)布線接近對(duì)稱且等距,二是允許使用更大、更高電流的功率開(kāi)關(guān)節(jié)點(diǎn)銅觸點(diǎn)。

最好將 HS 和 LS 返回平面分配至第 2 層,并將它們直接放置在柵極驅(qū)動(dòng)電阻和走線下方,這樣有助于減少柵極驅(qū)動(dòng)環(huán)路電感。對(duì)于高壓側(cè) GaNFET,由于 VDDH 旁路電容返回引腳和 NCP51820 SW 引腳被 HO 拉電流和 HO 灌電流走線分開(kāi),因此可以使用無(wú)填充的過(guò)孔通過(guò) HS 柵極返回平面連接到 GaNFET 的源極開(kāi)爾文引腳。建議使用多個(gè)過(guò)孔以幫助減少過(guò)孔電感。請(qǐng)注意,柵極驅(qū)動(dòng)電流路徑與功率開(kāi)關(guān)節(jié)點(diǎn)電流路徑隔離,盡可能避免主電流路徑中的噪聲注入柵極驅(qū)動(dòng)電流路徑。

對(duì)于低壓側(cè) GaNFET,由于 VDDL 旁路電容返回引腳和 NCP51820 PGND 引腳被 LO 拉電流和 LO 灌電流走線分開(kāi),因此可以使用無(wú)填充的過(guò)孔通過(guò) LS 柵極返回平面連接到 GaNFET 的源極開(kāi)爾文引腳。建議使用多個(gè)過(guò)孔以幫助減少過(guò)孔寄生電感。請(qǐng)注意,柵極驅(qū)動(dòng)電流路徑與電源 PGND 電流路徑隔離,盡可能避免主電流路徑中的噪聲注入柵極驅(qū)動(dòng)電流路徑。

信號(hào)接地 (SGND) 和電源接地 (PGND)

SGND 是所有內(nèi)部控制邏輯和數(shù)字輸入接地。在內(nèi)部,SGND 和 PGND 引腳相互隔離。PGND 用作低壓側(cè)柵極驅(qū)動(dòng)和返回基準(zhǔn)。

對(duì)于半橋電源拓?fù)浠蛉魏问褂?a target="_blank">電流檢測(cè)變壓器的應(yīng)用,NCP51820 SGND 和 PGND 應(yīng)在 PCB 上連接在一起。在此類應(yīng)用中,建議在 PCB 上通過(guò)一條低阻抗短走線將 SGND 和 PGND 引腳連接在一起,并且讓它們盡可能靠近 NCP51820。NCP51820 正下方是建立 SGND 至 PGND 連接的理想位置,如圖7所示。

圖7. PGND 至 SGND,0 Ω 單點(diǎn)連接

對(duì)于低功耗應(yīng)用,例如有源箝位反激式或正激式轉(zhuǎn)換器,通常會(huì)在低壓側(cè) GaN FET 源極支路中使用一個(gè)電流檢測(cè)電阻 RCS。在此類應(yīng)用中,NCP51820 PGND 和 SGND 引腳不得在 PCB 上連接,因?yàn)?RCS 會(huì)通過(guò)此連接短路。NCP51820 低壓側(cè)驅(qū)動(dòng)電路能夠承受 -3.5 V 至 +3.5 V 的共模電壓。大多數(shù)電流檢測(cè)電壓信號(hào)小于 1 V,因此低壓側(cè)驅(qū)動(dòng)級(jí)很容易“浮動(dòng)”到電流檢測(cè)所產(chǎn)生的電壓 VRCS 以上。如圖8所示,整個(gè)低壓側(cè)柵極驅(qū)動(dòng)浮動(dòng)到 VRCS 以上。這一點(diǎn)很重要,因?yàn)樗_保柵極驅(qū)動(dòng)幅度不會(huì)有損失,因此完整的 VDDL 電壓會(huì)出現(xiàn)在低壓側(cè) GaN FET 柵源端子。

按照上文所述布置電路時(shí),連接到 NCP51820 HIN 和 LIN 的控制器 HO/LO 路徑必須返回到控制器 GND 以形成完整電路。因此,NCP51820 SGND 和控制器 GND 必須相連。這是通過(guò)使用過(guò)孔將 NCP51820 SGND 和控制器 GND 連接到 SGND 平面來(lái)實(shí)現(xiàn)的,如圖 14 所示。SGND 平面僅用于信號(hào)和信號(hào)側(cè) VDD 返回,也會(huì)充當(dāng)信號(hào)的屏蔽層。VRCS 返回引腳還必須連接到控制器 GND,這應(yīng)該使用單條低阻抗走線來(lái)完成,該走線應(yīng)盡可能靠近 VRCS 走線(或位于其下方)。這會(huì)將功率級(jí) PGND 單點(diǎn)連接到 SGND,并將功率級(jí) PGND 上的高 dV/dt 和 di/dt 與 SGND 平面隔離開(kāi)來(lái)。

圖8. LS 柵極返回隔離和 VRCS 連接

開(kāi)關(guān)性能驗(yàn)證

在利用 NCP51820 驅(qū)動(dòng) GaNFET 的半橋功率級(jí)布局中使用了本文介紹的 PCB 設(shè)計(jì)技術(shù)。

圖9. 650 V,18 A,HEMT,GaNFET,350 V,10 APK

圖9顯示了驅(qū)動(dòng)兩個(gè) 650 V、18 A、90 mΩ GaNFET 的穩(wěn)態(tài)波形。通道 1(黃色)是高壓側(cè)柵源電壓,通道 2(紅色)是低壓側(cè)柵源電壓,通道 3(藍(lán)色)是開(kāi)關(guān)節(jié)點(diǎn)電壓(低壓側(cè) GaN VDS),通道 4(綠色)是電感電流。高壓側(cè)柵源電壓(通道 1,黃色)顯示存在輕微過(guò)沖和欠沖,這是使用高壓探針測(cè)量低壓浮動(dòng)信號(hào)(在柵極和功率開(kāi)關(guān)節(jié)點(diǎn)之間測(cè)量)的附帶結(jié)果。通道 2(紅色)顯示了柵源電壓的“更真實(shí)”測(cè)量結(jié)果,其中低壓側(cè) GaNFET 柵源電壓在柵極和 PGND 之間測(cè)得??梢钥吹剑瑬艠O驅(qū)動(dòng)邊沿非常銳利且干凈。同樣,開(kāi)關(guān)節(jié)點(diǎn)電壓(通道 3,藍(lán)色)沒(méi)有振鈴、過(guò)沖或欠沖。

圖10. 600 V,26 A,HEMT,GIT,GaNFET,dV/dt = 75 V/ns,320 V,20 APK

圖10所示波形是驅(qū)動(dòng)兩個(gè) HEMT、GIT、600 V、26 A、56 mΩ GaNFET 的結(jié)果,其電流能力比圖9中使用的器件要高。要實(shí)現(xiàn)高 dV/dt,需要相當(dāng)大的漏極電流 ID。例如,所示測(cè)量是在 ID = 20 APK 下進(jìn)行的,導(dǎo)致實(shí)測(cè) VDS dV/dt = 75 V/ns。三角形峰值電感電流顯示為純直流,這是進(jìn)行此測(cè)量所需的時(shí)基 (2 ns/div) 造成的。VSW 波形的 100 V 欠沖是用于顯示高 dV/dt 的測(cè)量技術(shù)的結(jié)果,在開(kāi)關(guān)節(jié)點(diǎn)上并不真正存在。

在高電壓、高頻率 PCB 設(shè)計(jì)中,為了成功運(yùn)用寬禁帶半導(dǎo)體,需要更好地了解寄生電感和電容的負(fù)面影響。透徹理解電氣返回平面、屏蔽、電流分離、隔離和精心布線的重要性,對(duì)于充分發(fā)揮 GaN 技術(shù)的性能優(yōu)勢(shì)至關(guān)重要。本文重點(diǎn)說(shuō)明在利用 NCP51820 驅(qū)動(dòng)高速電源拓?fù)渲惺褂玫?GaN 功率開(kāi)關(guān)設(shè)計(jì)中,實(shí)現(xiàn)成功設(shè)計(jì)必須采用的重要 PCB 設(shè)計(jì)準(zhǔn)則。這些技術(shù)已通過(guò)實(shí)測(cè)波形得到了驗(yàn)證,表明其能夠獲得出色的結(jié)果。

審核編輯黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 驅(qū)動(dòng)器
    +關(guān)注

    關(guān)注

    52

    文章

    8217

    瀏覽量

    146242
  • GaN
    GaN
    +關(guān)注

    關(guān)注

    19

    文章

    1933

    瀏覽量

    73272
  • PCB
    PCB
    +關(guān)注

    關(guān)注

    1

    文章

    1795

    瀏覽量

    13204
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    如何用集成驅(qū)動(dòng)器優(yōu)化氮化性能?

    氮化GaN) 晶體管的開(kāi)關(guān)速度比硅MOSFET快很多,從而有可能實(shí)現(xiàn)更低的開(kāi)關(guān)損耗。然而,當(dāng)壓擺率很高時(shí),特定的封裝類型會(huì)限制GaN FET的開(kāi)關(guān)性能。將
    發(fā)表于 06-06 16:14 ?2739次閱讀
    如何用集成<b class='flag-5'>驅(qū)動(dòng)器</b>優(yōu)化<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>性能?

    氮化GaN驅(qū)動(dòng)器PCB設(shè)計(jì)策略概要

    NCP51820 是一款 650 V、高速、半橋驅(qū)動(dòng)器,能夠以高達(dá) 200 V/ns 的 dV/dt 速率驅(qū)動(dòng)氮化(以下簡(jiǎn)稱“GaN”)
    發(fā)表于 02-20 10:56 ?677次閱讀

    氮化GaN技術(shù)助力電源管理革新

    3至10倍,但需要優(yōu)化驅(qū)動(dòng)器和控制拓?fù)洹D騰柱AC/DC轉(zhuǎn)換是一種不適用于硅片的拓?fù)浣Y(jié)構(gòu),可受益于GaN的低導(dǎo)通電阻、快速開(kāi)關(guān)和低輸出電容,從而提供三倍高的功率密度。諸如零電壓和零
    發(fā)表于 11-20 10:56

    什么是氮化GaN)?

    、高功率、高效率的微電子、電力電子、光電子等器件方面的領(lǐng)先地位?!喝c(diǎn)半說(shuō)』經(jīng)多方專家指點(diǎn)查證,特推出“氮化系列”,告訴大家什么是氮化GaN
    發(fā)表于 07-31 06:53

    請(qǐng)問(wèn)氮化GaN是什么?

    氮化GaN是什么?
    發(fā)表于 06-16 08:03

    傳統(tǒng)的硅組件、碳化硅(Sic)和氮化(GaN)

    傳統(tǒng)的硅組件、碳化硅(Sic)和氮化(GaN)伴隨著第三代半導(dǎo)體電力電子器件的誕生,以碳化硅(Sic)和氮化(
    發(fā)表于 09-23 15:02

    如何用集成驅(qū)動(dòng)器優(yōu)化氮化性能

    導(dǎo)讀:將GaN FET與它們的驅(qū)動(dòng)器集成在一起可以改進(jìn)開(kāi)關(guān)性能,并且能夠簡(jiǎn)化基于GaN的功率級(jí)設(shè)計(jì)。氮化 (
    發(fā)表于 11-16 06:23

    為什么氮化(GaN)很重要?

    氮化(GaN)的重要性日益凸顯,增加。因?yàn)樗c傳統(tǒng)的硅技術(shù)相比,不僅性能優(yōu)異,應(yīng)用范圍廣泛,而且還能有效減少能量損耗和空間的占用。在一些研發(fā)和應(yīng)用中,傳統(tǒng)硅器件在能量轉(zhuǎn)換方面,已經(jīng)達(dá)到了它的物理
    發(fā)表于 06-15 15:47

    用集成驅(qū)動(dòng)器優(yōu)化氮化性能

    用集成驅(qū)動(dòng)器優(yōu)化氮化性能
    發(fā)表于 11-02 08:16 ?0次下載
    用集成<b class='flag-5'>驅(qū)動(dòng)器</b>優(yōu)化<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>性能

    劃重點(diǎn) | 幾個(gè)氮化GaN驅(qū)動(dòng)器PCB設(shè)計(jì)必須掌握要點(diǎn)

    驅(qū)動(dòng)器PCB設(shè)計(jì)策略概要 (點(diǎn)擊查看),本文將為大家重點(diǎn)說(shuō)明利用 NCP51820 設(shè)計(jì)高性能 GaN 半橋柵極驅(qū)動(dòng)電路必須考慮的
    的頭像 發(fā)表于 02-22 05:45 ?958次閱讀

    幾個(gè)氮化GaN驅(qū)動(dòng)器PCB設(shè)計(jì)必須掌握要點(diǎn)

    本設(shè)計(jì)文檔其余部分引用的布線示例將使用含有源極開(kāi)爾文連接引腳的 GaNFET 封裝。 VDD 電容 VDD 引腳應(yīng)有兩個(gè)盡可能靠近 VDD 引腳放置的陶瓷電容。如圖 7 所示,較低值的高頻旁路電容(通常為 0.1 μF)應(yīng)與第二個(gè)并聯(lián)電容(1 μF)一起放在最靠近 VDD 引腳的位置。 圖1. NCP51820 VDD 電容布局和布線 所有走線須盡可能短而直??梢允褂眠^(guò)孔,因?yàn)?VDD 電流相對(duì)較低。SGND 返回平面對(duì)于其屏蔽特性以及讓所有信號(hào)側(cè)接地回路保持相同電位很有好處,建議使用。
    的頭像 發(fā)表于 02-27 18:29 ?827次閱讀
    <b class='flag-5'>幾個(gè)</b><b class='flag-5'>氮化</b><b class='flag-5'>鎵</b><b class='flag-5'>GaN</b><b class='flag-5'>驅(qū)動(dòng)器</b><b class='flag-5'>PCB設(shè)計(jì)</b><b class='flag-5'>必須</b><b class='flag-5'>掌握</b>的<b class='flag-5'>要點(diǎn)</b>

    幾個(gè)氮化GaN驅(qū)動(dòng)器PCB設(shè)計(jì)必須掌握要點(diǎn)

    NCP51820 是一款 650 V、高速、半橋驅(qū)動(dòng)器,能夠以高達(dá) 200 V/ns 的 dV/dt 速率驅(qū)動(dòng)氮化(以下簡(jiǎn)稱“GaN”)功
    的頭像 發(fā)表于 04-03 11:12 ?774次閱讀
    <b class='flag-5'>幾個(gè)</b><b class='flag-5'>氮化</b><b class='flag-5'>鎵</b><b class='flag-5'>GaN</b><b class='flag-5'>驅(qū)動(dòng)器</b><b class='flag-5'>PCB設(shè)計(jì)</b><b class='flag-5'>必須</b><b class='flag-5'>掌握</b>的<b class='flag-5'>要點(diǎn)</b>

    氮化GaN驅(qū)動(dòng)器PCB設(shè)計(jì)必須掌握要點(diǎn)

    NCP51820 是一款 650 V、高速、半橋驅(qū)動(dòng)器,能夠以高達(dá) 200 V/ns 的 dV/dt 速率驅(qū)動(dòng)氮化(以下簡(jiǎn)稱“GaN”)功
    的頭像 發(fā)表于 05-17 10:19 ?1070次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b><b class='flag-5'>GaN</b><b class='flag-5'>驅(qū)動(dòng)器</b><b class='flag-5'>PCB設(shè)計(jì)</b><b class='flag-5'>必須</b><b class='flag-5'>掌握</b>的<b class='flag-5'>要點(diǎn)</b>

    干貨 | 氮化GaN驅(qū)動(dòng)器PCB設(shè)計(jì)策略概要

    干貨 | 氮化GaN驅(qū)動(dòng)器PCB設(shè)計(jì)策略概要
    的頭像 發(fā)表于 09-27 16:13 ?995次閱讀
    干貨 | <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b><b class='flag-5'>GaN</b><b class='flag-5'>驅(qū)動(dòng)器</b>的<b class='flag-5'>PCB設(shè)計(jì)</b>策略概要

    氮化GaN)的最新技術(shù)進(jìn)展

    寬禁帶半導(dǎo)體,徹底改變了傳統(tǒng)電力電子技術(shù)。氮化技術(shù)使移動(dòng)設(shè)備的快速充電成為可能。氮化器件經(jīng)常用于一些轉(zhuǎn)換
    的頭像 發(fā)表于 07-06 08:13 ?828次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>(<b class='flag-5'>GaN</b>)的最新技術(shù)進(jìn)展
    RM新时代网站-首页